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Lecture 06: Machine Learning
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Clustering Strategies

* K-means

— Iteratively re-assign points to the nearest cluster center.

* Hierarchical Agglomerative clustering

— Start with each point as its own cluster and iteratively
merge the closest clusters.

* Mean-shift clustering
— Estimate modes of probability density function (pdf).

* Spectral clustering

— Split the nodes in a graph based on assigned links with
similarity weights.



Hierarchical Clustering

* Build a tree-based hierarchical taxonomy from a
set of images.
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Hierarchical Clustering algorithms

Agglomerative (bottom-up):
— Start with each image being a single cluster.
— At the end, all images belong to the same cluster.

Divisive (top-down):
— Start with all images belong to the same cluster.

— At the end, each node forms a cluster on its own.

Does not require the number of clusters k in advance.

Needs a termination condition.



Hierarchical Clustering

* This produces a binary
tree or dendrogram
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Levels of Clustering
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The machine learning framework

* Apply a prediction function to a feature representation of the
image to get the desired output:
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The machine learning framework

y = f(x)
RN

output  prediction Image
function feature

* Training: given a training set of labeled examples {(x,,y,), .-, (Xx,Yn)},

estimate the prediction function f by minimizing the prediction error
on the training set

Testing: apply f to a never before seen test example x and output the
predicted value y = f(x)



ML Steps
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Features

Raw pixels

Histograms

SIFT descriptors
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Many classifiers to choose from

e Support Vector Machine

* Artificial Neural networks

* K-nearest neighbor

* Decision Trees

* Naive Bayes Which iIs the best one?
e Bayesian network

* Logistic regression

* Random Forests

* Etc.



Recognition task and supervision

* Images in the training set must be annotated with the
“correct answer” that the model is expected to produce.

Contains a motorbike
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Spectrum of supervision
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Generalization

Training set (labels known) Test set (labels
unknown)

* How well does a learned model generalize from
the data it was trained on to a new test set?
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Generalization

 Components of generalization error

— Bias: how much the average model (prediction) over all training sets
differ from the true model (actual)?

* Error due to inaccurate assumptions/simplifications made by the
model

— Variance: how much models estimated from different training sets
differ from each other

* Underfitting: model is too “simple” to represent all the
relevant class characteristics
— High training error and high test error

* Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data

— Low training error and high test error



Bias-Variance Trade-off

Underfitting Overfitting

l

Error

Test error

Training error

————
High Bias i Low Bias
Low Variance CompIeXIty High Variance

18



Bias-Variance Trade-off
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Classification

* Assign input vector to one of two or more

classes

* Any decision rule divides input space into
decision regions separated by decision

boundaries
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Nearest Neighbor Classifier

* Assign label of nearest training data point
to each test data point

Voronoi partitioning of feature space
for two-category 2D and 3D data
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Classifiers: Nearest neighbor
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f(x) = label of the training example nearest to x

* All we need is a distance function for our inputs
* No training required!
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K-nearest neighbor
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1-nearest neighbor
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3-nearest neighbor
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5-nearest neighbor
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Classifiers: Linear
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* Find a linear function to separate the classes:

f(x) =sgn(w - x + b)
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Classifiers: Linear ANN

X2

x1
* Find a linear function to separate the classes:

f(x) = sgn(w - x + b)



Classifiers: Linear SVM

X2

x1
* Find a linear function to separate the classes:

f(x) = sgn(w - x + b)
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Nonlinear SVMs

« Datasets that are linearly separable work out great:

0

« But what If the dataset is just too hard?
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 We can map it to a higher-dimensional space:
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Nonlinear SVMs

e General idea: the original input space can
always be mapped to some higher-
dimensional feature space where the training
set is separable:
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What about multi-class SVMs?

e Unfortunately, there is no “definitive” multi-class SVM
formulation

e |n practice, we have to obtain a multi-class SVM by
combining multiple two-class SVMs

e One vs. others
— Training: learn an SVM for each class vs. the others
— Testing: apply each SVM to test example and assign to it the
class of the SVM that returns the highest decision value
e Onevs.one
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to assign to the
test example



