Lecture 06: Machine Learning

Instructor: Dr. Hossam Zawbaa

KILKY

00

Machine Learning Problems

Clustering Strategies

- K-means
 - Iteratively re-assign points to the nearest cluster center.
- Hierarchical Agglomerative clustering
 - Start with each point as its own cluster and iteratively merge the closest clusters.
- Mean-shift clustering
 - Estimate modes of probability density function (pdf).
- Spectral clustering
 - Split the nodes in a graph based on assigned links with similarity weights.

Hierarchical Clustering

• Build a tree-based hierarchical taxonomy from a set of images.

Hierarchical Clustering algorithms

• Agglomerative (bottom-up):

- Start with each image being a single cluster.
- At the end, all images belong to the same cluster.

• Divisive (top-down):

- Start with all images belong to the same cluster.
- At the end, each node forms a cluster on its own.
- Does not require the number of clusters **k** in advance.
- Needs a termination condition.

Hierarchical Clustering

- This produces a binary tree or *dendrogram*
- The final cluster is the root and each data item is a leaf
- The height of the bars indicate how close the items are

Levels of Clustering

Machine Learning Problems

The machine learning framework

• Apply a prediction function to a feature representation of the image to get the desired output:

The machine learning framework

- Training: given a training set of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

ML Steps

Features

• Raw pixels

• Histograms

• SIFT descriptors

Many classifiers to choose from

- Support Vector Machine
- Artificial Neural networks
- K-nearest neighbor
- Decision Trees
- Naïve Bayes
- Bayesian network
- Logistic regression
- Random Forests
- Etc.

Which is the best one?

Recognition task and supervision

 Images in the training set must be annotated with the "correct answer" that the model is expected to produce.

Contains a motorbike

Spectrum of supervision

Unsupervised

Generalization

Training set (labels known)

Test set (labels unknown)

 How well does a learned model generalize from the data it was trained on to a new test set?

Generalization

- Components of generalization error
 - Bias: how much the average model (prediction) over all training sets differ from the true model (actual)?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- Underfitting: model is too "simple" to represent all the relevant class characteristics
 - High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low training error and high test error

Bias-Variance Trade-off

Bias-Variance Trade-off

Classification

- Assign input vector to one of two or more classes
- Any decision rule divides input space into decision regions separated by decision boundaries

Nearest Neighbor Classifier

 Assign label of nearest training data point to each test data point

from Duda et al.

Voronoi partitioning of feature space for two-category 2D and 3D data

Source: D. Lowe

Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

- All we need is a distance function for our inputs
- No training required!

K-nearest neighbor

1-nearest neighbor

3-nearest neighbor

5-nearest neighbor

• Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

Classifiers: Linear ANN

• Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

Classifiers: Linear SVM

• Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

Nonlinear SVMs

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

Nonlinear SVMs

 General idea: the original input space can always be mapped to some higherdimensional feature space where the training set is separable:

What about multi-class SVMs?

- Unfortunately, there is no "definitive" multi-class SVM formulation
- In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs
- One vs. others
 - Training: learn an SVM for each class vs. the others
 - Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value
- One vs. one
 - Training: learn an SVM for each pair of classes
 - Testing: each learned SVM "votes" for a class to assign to the test example